IfSQ Level-2

A Foundation-Level
Standard for Computer
Program Source Code

Second Edition
November 2009

Graham Bolton
Stuart Johnston

: ch-rn_waa.rdt ’,

[WEL_id = E.must_jq
code = { P_code, code }
Yolgords = NVL{ P_volgorde, volgorde)

Presentatje o NVL(p_presuntatis.

Presentati,
l\rss_curiroirtypn ;

‘starg’ 3
em IS Nor NULL)

1=F

STR{ P.iten, B.block § = 4 }
H P item:

‘= E.block] |, "Hp_item,

ode IS yprp

KW¥L(Rame_in(1,
SSentatie 1g NOT Myrp
lgords 15 NOT Mupg

orde <w 4 ¥

itemnaay
¢ P.Presentatjg o
* Povolporde = b
3.

* P_presgp-4
Valgoyes

ull ;

1fSQ Level-2

A Foundation-Level
Standard for Computer
Program Source Code

Graham Bolton
Stuart Johnston

Copyright © IfSQ 2005-2009
IfSQ, Institute for Software Quality.
All rights reserved.

Contents

3.1
3.2.
3.3

4.1.
4.2.
4-3.
4-4-
4.5.

5.1.
5.2.

Management Overview
Background

The IfSQ Solution
Defects and Defect Indicators
The IfSQ Standards
The IfSQ Assessment Process

The IfSQ Level-2 Standard
Work In Progress (WIP)

Structured Programming (SP)
Single Point of Maintenance (SPM)
Defensive Programming (DP)
Causes for Concern (CfCs)

The IfSQ Compliance Assessment Method
Commissioning a Level-2 Assessment
Performing a Level-2 Assessment
Acknowledgements

Research

Bibliography

O 0

13
15
23
31
37
41

50

50

57

59
61

1. Management Overview

This booklet is about how to improve the quality of software through
the use of code inspection.

Finding Software Defects

There are three ways of finding defects in any computer program:

+ By testing the program, which involves running the program with a
variety of input data and in a variety of scenarios to try and expose all
error conditions. This is also referred to as dynamic analysis.

+ By performing automated static analysis, in which the program is not
run, but an analysis tool is used to process either the source or object
code to flag possible coding errors.

+ By code inspection, where a programmer visually examines the source
code, looking for indications of poor programming practices or faulty
logic.

As shown in Figure 1, these methods are complementary, and each is a
useful component of the quality assurance process.

U

: All defects in a computer program
Defects found by Testing
Defects found by Static Analysis

v A C

I: Defects found by Code Inspection

Figure 1. Coverage of software defect detection methods

<3>

IfSQ Level-2

<4>

Code Inspection

Code inspection has been proved to be at least 10 times more cost-
effective than the other two methods. Despite this, it is the least-used,
due to its human-intensive nature, and its reputation as being a tedious
activity. However, neglecting this aspect of the quality process during
software development greatly increases the risk of failure in a later
stage.

To facilitate the acceptance of code inspections as a fundamental part
of the development process, IfSQ proposes the adoption of a light-
weight quality process, consisting of a three-level set of coding stand-
ards combined with an assessment method.

IfSQ has been applying this quality process for several years in projects
of all sizes in the industrial, financial and governmental sectors. The
end result is:

- Fewer defects

+ Increased reliability

¢ Increased maintainability

+ Increased control over development costs and suppliers
 Enhanced IT audit scope

Audience

This booklet is aimed at anyone involved in the software development
process, including:

« Developers

 Testers

+ Project managers

+ Accountants

« IT Auditors

« Clients

2. Background

The Human Factor

In recent years the tools used by the software industry have become
increasingly sophisticated and powerful. The use of modern modeling
tools, integrated development environments, source control systems,
code libraries, and automated test suites have freed today’s architects,
programmers, and testers from many of the repetitive aspects of their
jobs, and made them more productive and efficient than their prede-
Cessors.

However as software consultant and author Gerald Weinberg wrote in
The Psychology of Computer Programming, “Programming is first and fore-
most a human activity and only secondly something that involves com-
puters.” Human beings inevitably make mistakes, regardless of the
technology supporting them. Indeed, overconfidence in the abilities of
tools can make it easy to neglect quality practices fundamental to the
craft of programming.

History’s Worst Software Bugs
Simson Garfinkel 11.08.05

Sixty years later, computer bugs are still with us, and show no sign of
going extinct. As the line between software and hardware blurs, coding
errors are increasingly playing tricks on our daily lives. Bugs don’t just
inhabit our operating systems and applications -- today they lurk within
our cell phones and our pacemakers, our power plants and medical
equipment. And now, in our cars.

We see the results on a regular basis in the media, with stories of sys-
tem failures, project overruns, and financial loss. Many of these cases
have been traced back to simple errors resulting from the lack of a sys-
tematic approach to quality during system development.

<5>

IfSQ Level-2

<6>

Testing Is Not Enough

It is taken for granted that all software undergoes extensive testing
before being released for use. But clearly, given the types of problems
mentioned above, the test process alone is not sufficient to ensure bug-
free applications.

While powerful test tools can hugely aid our ability to verify the correct
working of programs, they cannot find every defect. All too often, bugs
end up being discovered by the end-user. Any such defects caught dur-
ing testing or production must go back to the programmer to be fixed,
afar more time-consuming and expensive proposition than fixing them
during the coding phase. Finding a defect by testing has been shown to
be 10 times more expensive than finding a defect by inspecting the
source code.’

A Lightweight Quality Process

In the last few years, within the software industry there have been
attempts to move from the types of formal development methodologies
commonly used in the 1980s and 19gos to a lighter and quicker set of
processes. These so-called “agile” methods have proved to be popular
and effective precisely because they are easy to comprehend and put
into practice.

IfSQ strongly believes that what the software industry needs now is a
set of quality standards, analogous to the agile development methods,
that are easy to understand and apply. More importantly, IfSQ believes
that reducing the threshold to achieving code consistency and com-
pleteness will encourage a fundamental change in attitude to quality
within a software development organisation.

However, producing yet another standard is not enough if it ends up
sitting unused on a shelf. In order to be effective, it must be paired with
an enforcement mechanism.

1. Fagan,1976; Shull et al, 2002

IfSQ therefore proposes the adoption of a lightweight quality process
using code inspection, consisting of a three-level set of coding stand-
ards combined with an assessment method. Together these provide a
reliable measure of the quality of a piece of source code. This booklet
describes the second of the three levels, IfSQ Level-2, and its associated
assessment method.

<7>

IfSQ Level-2

<8>

3. The IfSQ Solution

IfSQ has developed a three-level set of Level-3:
coding standards, that can significantly e 17 L 2 2
improve the quality practices within Founlaz\;?(l,-:_leve|
any programming team. Each level de- Level-1:
scribes a number of identifiable defects]

that a programmer should learn to look
for and fix. The hierarchy of the levels reflects the relative complexity of
identifying and fixing these defects in the software.

To encourage the adoption of these standards, IfSQ has also formu-
lated an assessment process, which can be used for self-assessment,
peer assessment, third-party assessment, or full certification issued by
a recognized quality body.

3.1. Defects and Defect Indicators

Defects

We define a defect as an error or omission in the source code of a com-
puter program that may cause it to malfunction. There are three ways to
find defects in software prior to taking it into use:

+ By testing the software

« Through static analysis of the code

« By inspecting the code

In terms of cost, it is cheaper by far to identify and fix defects during the
coding phase than finding them during testing or production and hav-
ing to send the code back through another cycle of bug fixing and test-
ing. If bugs are uncovered by the end-user, the result can be business
disruption for the user, with potential financial or legal consequences.

Defect Indicators

Itis not always possible to identify defects directly, but there are usually
patterns indicating that defects are present. We refer to these patterns
as defect indicators.

Through analysis of research papers and from its extensive experience
in performing code inspections, peer reviews, and walkthroughs, IfSQ
has identified a wide range of defect indicators and encapsulated these
into a set of standards that can be applied to any piece of code, from a
subroutine to an entire system, written in any language.

Assessing Defect Indicators

When assessing a program, we mark all lines of code affected by each
defect indicator. We refer to these as defect lines. The number of defect
lines in a program per thousand lines of code is an effective measure-
ment of quality. This measurement can be used in two ways:

* to estimate repair costs

+ to set standards for maintenance

3.2. The IfSQ Standards

IfSQ has produced a set of standards for assessing computer program
source code. These standards are divided into three levels according to
the expertise required and the time it takes to perform an assessment:
« IfSQ Level-1: Entry-Level

+ IfSQ Level-2: Foundation-Level

- IfSQ Level-3: Industry Best Practice

The IfSQ Level-1 Standard

The base level for assessing quality is the IfSQ Level-1 Standard for
Computer Program Source Code. Level-1 defines the most obvious and
commonly occurring defect indicators that are universally acknowledged
by software experts as bad practice.

<9>

IfSQ Level-2

<I0>

This standard helps programmers, managers or auditors to locate indi-
cators of low reliability and high maintenance costs in computer soft-
ware and fix them in an early stage before they proceed to testing or
production. Software that meets the requirements of IfSQ Level-1 is more
reliable, and easier to maintain, than software that does not meet the
requirements.

The Level-1 Standard is described in detail in the book IfSQ Level-1: An
Entry-Level Standard for Computer Program Source Code.

The IfSQ Level-2 Standard

The IfSQ Level-2 Standard for Computer Program Source Code adds an
additional set of defect indicators to those contained in Level-1 to create
a more comprehensive measure of software quality.

Aside from the additional defect indicators, there are two main differ-
ences between Level-1 and Level-2. Firstly, the two standards require
differing levels of expertise in order to identify defects. The defect indi-
cators in Level-1 are sufficiently obvious and easy to identify that any-
one, regardless of programming experience, is able to perform a Level-1
assessment. The Level-2 standard on the other hand requires a more
advanced level of programming knowledge and experience.

Secondly, whereas Level-1 is essentially objective in its assessment, in
Level-2 we actively promote discussion between the assessor and the
programmer, by requiring the assessor to use his professional judge-
ment to look for and identify potential issues, which we refer to as
Causes for Concern (CfCs), and to resolve his concerns directly with
the programmer.

The Level-2 Standard is still concise enough, however, that an assess-
ment can be performed quickly by an individual. Level-2 inspections
are extremely cost-effective because the savings made by finding defects
atan early stage greatly outweigh the costs of the assessment. The Level-2
Standard is described in more detail in Section 4.

The IfSQ Level-3 Standard

The IfSQ Level-3 Standard collates an extensive and up-to-date set of
defect indicators, including those from Level-1 and Level-2. These indica-
tors are encapsulated in a comprehensive check-list for code walk-
throughs, used to perform an in-depth analysis of program source code.

Because the Level-3 Standard represents current industry best practice, it
is not set in stone. The checklist is updated every 6 months to reflect any
new research. Level-3 is therefore available on a subscription basis.

Compared to the first two levels, IfSQ Level-3 is significantly more expen-
sive and time-consuming to apply, since it requires a substantially higher
degree of programming expertise, and also because it requires two people
to perform the assessment, due to the extent of the checklist.

For more details, see the book, IfSQ Level-3: Industry Best Practice for Com-
puter Program Source Code.

3.3. The IfSQ Assessment Process

While the person most directly impacted by unreliable software is the
user, in fact all stakeholders (including programmers, project manag-
ers, directors, and shareholders) have an interest in improved quality
and reduced risk.

However, without some independent guarantee of quality, there is a higher
chance that software may be incomplete, poorly structured, or unquantifi-
able in terms of risk or future costs of supporting the software.

A process that requires a programmer to sign oft on a piece of source
code and make a declaration about its perceived quality helps avoid
these types of risk by guaranteeing that basic quality processes are
being applied in a systematic way.

<II>

IfSQ Level-2

<12>

In addition to the three levels of Standard, IfSQ has therefore defined
an assessment process that specifies:

+ an inspection method

« an assurance of compliance to the Standards

The following figure illustrates the IfSQ Assessment Process.

IfSQ Level-2
Level-2 > | | Assessment
Standard NS~
E——
Annotated
Source \ Source
Code - Code
L P L

Figure 2. The IfSQ Assessment Process

There are four levels of assurance of compliance:

+ Self-assessment, an inspection carried out by the programmer himself,

« DPeer assessment, an inspection carried out by a member of the devel-
opment team on a colleague’s code,

« Third-party assessment, an inspection carried out by a third party
uninvolved in the development of the code,

« Certification, an inspection by a quality assurance body.

The end product of an IfSQ Level-2 Assessment or Certification is an
IfSQ Compliance Assessment Report.

The inspection method and levels of quality assurance are described in
detail in Section 5.

4. The IfSQ Level-2 Standard

Categories of Level-2 Defect Indicator

IfSQ has identified a core set of principles that can be applied to the
software development process:

Complete your work: When you deliver a program, it should be free
of unfinished work.

- Divide and conquer: Break down complex programs into smaller

programs that are simple enough to understand and maintain.

- Don’trepeat yourself: Avoid duplicating identical elements in multi-

ple places within the same program.

If it’s going to fail, make it fail safely: Consider all ways the program
might fail and take explicit measures to ensure the consequences
aren’t catastrophic.

IfSQ Level-2 formalizes these principles into the following inspection
categories:

.

Work In Progress (WIP): There are clear indications that the program
is not yet finished.

« Structured Programming (SP): There are clear indications that part of

the program is too complex.

- Single Point of Maintenance (SPM): Values have been hard-coded into

the program, or pieces of code have been duplicated at various-
places.

+ Defensive Programming (DP): The program does not defend itself

against inconsistent data or subsystem failures.

Each Level-2 defect indicator falls into one of the above categories.
This section describes the Level-2 indicators, the risks involved if the
indicators are ignored, and a number of solutions which can be applied
if the indicators are present.

<13>

foorIfiA8tE (ebyheTe
.Noac@bjLevel7Node.
eSS ARPRTE BRI TING 1

Hog hd)

N() Ley
he e St FLPHETPARES

<14>

4.1. Work In Progress (WIP)

Work In Progress means there are indi-
cationsinthecodethatthe programmer
had intended (or is intending) to per-
form some work, but that this work
has not been completed.

At the very least, a work in progress in-
dicator causes confusion for mainte-
nance programmers, wasting their time.
Atworst, it may indicate missing func-
tionality, which could later lead to soft-
ware failure.

There are 3 forms of Work in Progress that are easy to detect:

Vague “To Do” (WIP-1): A programmer has left a note to himself or
his colleague indicating that a piece of work needs to be done. How-
ever it is clear that the work has not been carried out, and there is no
indication as to when the work needs to be done.

Disabled Code (WIP-2): Code has been written and the programmer
has disabled it, or switched it off, without making it clear why it has
been disabled, or when or whether it will be reenabled.

Empty Statement Block (WIP-3): The programmer has left a statement
block or placeholder empty. When a programmer designs a program
top-down he will often first outline the structure of the program in
the form of statement blocks and fill in the content of each block in
the course of his work. An empty statement block therefore indicates
that there may be missing logic and that some extra code may be
required.

<15>

IfSQ Level-2

B WIP-1: Vague “To Do”

> DEFECT INDICATOR

There is a comment indicating that the programmer intends to add a
piece of code, but has not specified an exact timeframe or reason, or
other precise explanation.

For example, text such as the following are all indications that a pro-
gram may be incomplete:

+ “Todo”

+ “Not Yet Implemented”

+ “Action point”

> RISKS

A “To Do” may indicate missing functionality. In other words, the pro-

grammer has at some point decided that code needs to be written, but

has not finished the work.

- If there is missing functionality, the problem may be found during
testing and need to be fixed, or it may be found after the program
goes into production, with unforeseen consequences, such as a crash
or malfunction.

« Ifno code is actually required, a maintenance programmer may later
waste time trying to determine whether it is required.

> ASSESSMENT
» Mark all of the lines of the comment block that contains the defect
indicator.

> REMEDY

+ Add a comment explaining when the work needs to be done, and
why, OR

- Do the work, OR

+ Determine the work doesn’t need to be done and remove the com-
ment.

<16>

> EXAMPLE ASSESSMENT

Businessactivity.cs

2377 private void HandleWorkflowEvents (int eventStatus)

2378

2379 foreach (ItemOfBusiness iob in this.Items)
2380 {

2381 foreach (DecisionPoint dp in iob.DecisionPoints)
2382 {

2383 // if (dp.GetCase() != null)

2384 // {

2385 try

2386 {

2387 this.EventWebService.HandleEvent (
2388 “StatusUpdateInActivityOccurred”,
2389 dp.GetCase () .ObjId.ToString () +
2390 ObjId.ToString (),

2391 eventStatus) ;

2392 }

2393 catch

2394 { Wi(P-1
2395 / CAN BE REMOVED FOR PRODUCTION
2396 / Temporarily use deprecated event
2397 try

2398 {

2399 this.EventWebService.HandleEvent (
2400 “StatusUpdateInActivityOccurred”,
2401 dp.case.id, eventStatus);

2402 }

2403 catch { }

2404 }

2405 // }

2406 }

2407 }

2408 }

page 33 of 82
Figure 3. WIP-1 Vague To Do

<17>

IfSQ Level-2

<18>

B WIP-2: Disabled Code

>

DEFECT INDICATOR

Code has been made unreachable, for example by:

turning it into a comment or remark,

placing a return statement above the code, causing the routine to exit
without executing the code, and there is no comment explaining
why.

RISKS

If the code should not have been disabled and is required in produc-
tion, the problem may be found during testing and need to be fixed,
or it may be found after the program goes into production, with un-
foreseen consequences, such as a crash or malfunction.

If the code is commented out because the programmer thinks it may
be needed in future, another programmer may later remove it because
he is not aware of the first programmer’s intentions.

If the code is actually not required, a maintenance programmer may
waste time later figuring this out.

ASSESSMENT
Mark all of the disabled lines of code.

REMEDY

Determine if the code is required now, later, or not at all:

+ If now, enable it.

- Iflater, write a comment to record your decision and the date that
you made it.

« Otherwise remove the “dead” code.

> EXAMPLE ASSESSMENT

Businessactivity.cs

2377 private void HandleWorkflowEvents (int eventStatus)

2378

2379 foreach (ItemOfBusiness iob in this.Items)

2380 {

2381 foreach (DecisionPoint dp in iob.DecisionPoints)

// if (dp.GetCase() != null) WiP-2
// {
2385 try
2386 {
2387 this.EventWebService.HandleEvent (
2388 “StatusUpdateInActivityOccurred”,
2389 dp.GetCase () .ObjId.ToString () +
2390 ObjId.ToString (),
2391 eventStatus) ;
2392 }
2393 catch
2394 {
2395 // CAN BE REMOVED FOR PRODUCTION
2396 // Temporarily use deprecated event
2397 try
2398 {
2399 this.EventWebService.HandleEvent (
2400 “StatusUpdateInActivityOccurred”,
2401 dp.case.id, eventStatus);
2402 }
2403 catch { }
2404 }
=TT DWP-2
2406 }
2407 }
2408 }

page 33 of 82
Figure 4. WIP-2 Disabled Code

<19>

IfSQ Level-2

<20>

B WIP-3: Empty Statement Block

> DEFECT INDICATOR

There is a placeholder for program logic containing no code and no
explanation as to why it is empty. For example, any of the following
words or symbols with nothing in between:

+ “BEGIN END”

- “IF ENDIF”

+ “ELSE ENDIF”

- {

Or:

« a paragraph containing a return

« aroutine with just RETURN FALSE

> RISKS

The empty block may indicate missing functionality. In other words,

the programmer has decided at some point that code needs to be writ-

ten, but has not started the work.

+ If there is missing functionality, the problem may be found during
testing and need to be fixed, or it may be found after the program
goes into production, with unforeseen consequences, such as a crash
or malfunction.

« Ifno code is actually required, a maintenance programmer may waste
time later figuring this out.

> ASSESSMENT
+ Mark the lines of code that delimit the empty statement block.

> REMEDY

+ Find out what code should be there and put it in, OR

+ Add a comment to explain why no code is required, OR
+ Remove the empty block.

> EXAMPLE ASSESSMENT

Businessactivity.cs

2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

private void HandleWorkflowEvents (int eventStatus)

{

//
//

foreach (ItemOfBusiness iob in this.Items)

{

foreach (DecisionPoint dp in iob.DecisionPoints)

{

if (dp.GetCase() != null)
{
try
{
this.EventWebService.HandleEvent (
“StatusUpdateInActivityOccurred”,
dp.GetCase () .ObjId.ToString () +
ObjId.ToString (),

eventStatus) ;
1
catch
{

// CAN BE REMOVED FOR PRODUCTION
// Temporarily use deprecated event
try
this.EventWebService.HandleEvent (
“StatusUpdateInActivityOccurred”,

dp.case.id, eventStatus);

}
i
1

page 33 of 82

Figure 5. WIP-3 Empty Statement Block

<2I>

foorIfiA8tE (ebyheTe
.Noac@bjLevel7Node.
eSS ARPRTE BRI TING 1

F &

N() Ley
he e St FLPHETPARES

<22>

4.2. Structured Programming (SP)

The costs of producing and maintain-
ing a computer program are largely de-
termined by its complexity.

In writing computer programs a pro-
grammer typically uses structured pro-
gramming techniques to break complex
problems down into simpler problems
that are easier to understand and solve.
This “divide and conquer” process can be
repeated until each component is small
enough and simple enough to under-
stand, build and maintain.

IfSQ Level-2 contains three simple indications that the divide and con-
quer process has not yet been completed:
+ Too Long (SP-1): A routine is longer than 200 lines (including com-

ments and blank lines).

+ Too Deep (SP-2): Nesting of conditional statements is deeper than

4 levels.

+ Routine Too Complex (SP-3): A routine includes more than 1o com-

parisons.

<23>

IfSQ Level-2

<24>

H SP-1: Routine Too Long

> DEFECT INDICATOR

A program (method, module, routine, subroutine, procedure, or any
named block of code) consists of more than 200 lines (including com-
ments and blank lines).

> RISKS
Programs over 200 lines are more error-prone and therefore more
expensive to maintain.?

> ASSESSMENT
« Mark all the lines following the 200th line of the program, including
comments and blank lines.

> REMEDY

+ Restructure or refactor your code into smaller, easy-to-understand
chunks, OR

+ Write a comment justifying the length of the program.

Do NOT:

+ Remove comments or blank lines to make it shorter,

+ Put multiple commands on one line to make the program shorter.

2. Basil & Perricone 1984.

> EXAMPLE ASSESSMENT

PartyDialog.cs
1753 private void ShowAddenda ()
1754 {
1755 _showAddendumPage = false;
1756
1757 if (AR83 () i AR100())
1758 {
1759 if (_party.Addendum.IsNull)
1760 {
1761 Addendum addendum = Addendum.NewAddendum() ;
1762 _party.Addendum = addendum;
1763 }
1764
page 39 of 53
180 lines omitted here (pages 40 — 42)
PartyDialog.cs
1950 if (_case.Volatility.HasNewAddendum)
1951 {
1952 if (_party != null &&
1953 _support == null) fP-l
1954 {
1955 if (_party.IsInvolved)
1956 {
1957 if (_party.Addendum.IsNull)
1958 {
1959 Addendum addendum =
1960 Addendum.NewAddendum () ;
1961 _party.Addendum = Addendum;
1962 }
1963 _addendumControl .Addendum =
1964 _party.Addendum;
1965 _showAddendumPage = true;
1966 }
\\12§Z¥ else

Figure 6. SP-1: Routine Too Long

page 43 of 53

<25>

IfSQ Level-2

<26>

M SP-2: Nesting Too Deep

> DEFECT INDICATOR
Statements involving a condition have been nested to a depth of more
than 4.

> RISKS

With more than 4 levels of nesting, programs become difficult to
understand and therefore difficult to maintain. Programmers are more
likely to introduce new errors when they make changes.3

> ASSESSMENT
+ Mark all the lines controlled by the sth level of condition.

> REMEDY

Refactor the deeply nested code into its own routine, OR
Redesign the tests in the condition, OR

Write a comment justifying the level of nesting.

3. Yourdon 19806; Ledgard & Tauer 1987.

> EXAMPLE ASSESSMENT

PartyDialog.cs

1753 private void ShowAddenda ()
1754 {

1755 _showAddendumPage = false;
1756

1757 if (AR83 () i AR100())

1758 {

1759 if (_party.Addendum.IsNull)

1760 {

1761 Addendum addendum = Addendum.NewAddendum() ;
1762 _party.Addendum = addendum;
1763 }

1764

page 39 of 53
180 lines omitted here (pages 40 — 42)
PartyDialog.cs

if (_case.Volatility.HasNewAddendum)

{
if (_party != null &&

_support == null)

if (_party.IsInvolved)

{

if (_party.Addendum.IsNull
{ (P-2
Addendum addendum =
Addendum.NewAddendum () ;
_party.Addendum = Addendum
}
_addendumControl .Addendum =
_party.Addendum;
_showAddendumPage = true;

}

else

page 43 of 53

Figure 7. Nesting Too Deep

<27>

IfSQ Level-2

M SP-3: Logic Too Complex

> DEFECT INDICATOR

A program (method, module, routine, subroutine, procedure, or any-
named block of code) contains more than 1o binary terms in condi-
tional statements. This is based on McCabe’s Complexity metric.

> RISKS

Programs containing more than 1o comparisons are more difficult to
understand and therefore more difficult to maintain. Programmers are
more likely to introduce new errors when they make changes.*

> ASSESSMENT

+ Locate and count all binary terms in the program. An easy way to do
this is by looking for the keywords and symbols that can precede them
in the language you are using. For example:
- If, While, Until, etc.
+ And, Or, &&, ||, etc.

« Mark all the binary terms after the 1oth occurrence.

> REMEDY

« Simplify complicated tests with Boolean function calls, OR

+ Refactor the complex code into separate routines, OR

« Restructure the program to remove any unnecessary repetition.

4. McCabe 1976; Shen et al. 1985; Ward 1989.

<28>

> EXAMPLE ASSESSMENT

PartyDialog.cs
1753 private void ShowAddenda ()
1754 {
1755 _showAddendumPage = false;
1756
1757 if (AR83 () i AR100())
1758 {
1759 if (_party.Addendum.IsNull)
1760 {
1761 Addendum addendum = Addendum.NewAddendum() ;
1762 _party.Addendum = addendum;
1763 }
1764
page 39 of 53
180 lines omitted here (pages 40 — 42)
PartyDialog.cs
1950 if (_case.Volatility.HasNewAddendum)
1951 { (P-3
1952 if (_party != null@
1953 _support == null)
1954 {
1955 @ (_party.IsInvolved)
1956 {
1957 if) (_party.Addendum.IsNull)
1958 {
1959 Addendum addendum =
1960 Addendum.NewAddendum () ;
1961 _party.Addendum = Addendum;
1962 }
1963 _addendumControl .Addendum =
1964 _party.Addendum;
1965 _showAddendumPage = true;
1966 }
1967 else

page 43 of 53

Figure 8. SP-3: Logic Too Complex

<29>

foorIfiA8tE (ebyheTe
.Noac@bjLevel7Node.
eSS ARPRTE BRI TING 1

Hog hd)

N() Ley
he e St FLPHETPARES

<30>

4.3. Single Point of Maintenance (SPM)

The task of a maintenance program-
mer is to implement a requested change
to a piece of software in a consistent
fashion, for example, a change to the
calculation of sales tax affecting multi-
ple programs.

This task is made unnecessarily diffi-
cult if the program is constructed in
such a way that algorithms and values
are duplicated throughout the code,
for example through the use of copy
and paste, or by hard-coding values into
a program.

The concept of a single point of maintenance dictates that frequently
used elements should be defined, and modified, in a single location.
Duplication of such elements increases the difficulty of change, may
decrease clarity and increases the likelihood of inconsistency.

There are three contraventions of Single Point of Maintenance that are

easy to detect:

+ Magic Numbers (SPM-1): Numeric literals (other than o or 1) have
been hard-coded into the program.

+ Magic Strings (SPM-2): A string literal has been hard-coded into a
statement that influences the flow of a program.

+ Copy/Paste Programming (SPM-3): An identical or largely similar sec-
tion of code appears in two or more places in the program or set of
programs.

<31>

IfSQ Level-2

<32>

H SPM-1: Magic Numbers

> DEFECT INDICATOR
Numeric literals (other than o or 1) have been embedded directly and
without explanation into the source code. For example “34” or “86400”.

> RISKS
If numbers are embedded in code in this way, it increases the time
needed to make maintenance changes, and increases the risk of error.*

> ASSESSMENT
« Mark all the lines that contain an unexplained numeric literal other
than o (zero) or 1 (one).

> REMEDY
« Isolate a single copy of the number and refer to it. For example, iso-
late the number into:
+ alocal constant or enumerated type
- a global constant or enumerated type
+ aconstant class
+ an initialisation file

Note: If your programming language does not support constants, simu-
late this, for example, by declaring a variable and initialising it at the
beginning of the program.

5. Korson & Vaishnavi 1986

> EXAMPLE ASSESSMENT

printlib.4gl
0474 procedure print_header (
0475 input = varchar(132) /* L_INPUT LINE */ not null) =
0476
0477 declare
0478 name = varchar(40) /* L_DEPT NAME */ not null;
0479 owner = integer not null;
0480
0481 Dbegin
0482
0483 -- Print the name..
0484 if left (input, = ‘pro’ then
0485 name = shift (input, ;
0486 elseif left(input,= ‘acc’ then
0487 name = shift (input, ;
0488 endif;

0489 printfill (name] @ ;
0490

0491 -- Print the owne

0492 if left (input, @ = /pro’

0493 owner = e

0494 elseif left (iggut, 3) acc’ en

0495 owner =

0496 endif;

0497 if owner <> 0 then

0498 printfill (decodepwner owner /),);
0499 else

0500 printfill (‘7, D&

0501 endif;

0502

0503 -- Print the rest of fhe ipput

0504 if length (input) >the
0505 print (shift (input, (37));

page 12 of 33
Figure 9. SPM-1: Magic Numbers

<33>

IfSQ Level-2

<34>

B SPM-2: Magic Strings

> DEFECT INDICATOR
A string literal has been hard-coded into a statement that influences the
flow of a program (e.g., in an If, While, or For statement).

> RISKS
If strings are embedded in code in this way, it increases the time needed
to make maintenance changes, and increases the risk of error.

> ASSESSMENT

« Mark all binary terms that involve a string literal. An easy way to do
this is by looking for the keywords and symbols that can precede
binary terms in the language you are using. For example:
- If, While, Until, etc.
+ And, Or, &&, |, etc.

> REMEDY
- Isolate a single copy of the string and refer to it. For example isolate
the literal into:
+ alocal constant
+ aconstant class
« an initialisation file
- a global constant or enumerated type

Note: If your programming language does not support constants, sim-
ulate this by declaring a variable and initialising it at the beginning of
the program.

> EXAMPLE ASSESSMENT

printlib.4gl
0474 procedure print_header (
0475 input = varchar(132) /* L_INPUT LINE */ not null) =
0476
0477 declare
0478 name = varchar(40) /* L_DEPT NAME */ not null;
0479 owner = integer not null;

0480
0481 Dbegin

0483 -- Print the name..

0484 (GE left(input, [3))= ‘pro’ them>

0485 name = shift (input, [-3);

0486 C::EEEgEE left (input,| 3)7= ‘aggi:EEEED
0487 name = shift (input, (-3);

0488 endif;

0489 printfill (name, 34));

0490

0491 -- Print the ownet..

0492 (IE:EEEE(input, 3)) = ‘prg;ligiz:>
0493 owner = 3;

0494 (::EEEEEE left (ipput, 3) = 'agEL:EEEED
0495 owner =|2;

0496 endif;

0497 if owner <> 0 then

0498 printfill (decodepwner A owner /), 34));
0499 else

0500 printfill (‘', (34));

0501 endif;

0502

0503 -- Print the rest of the inpput

0504 if length(input) >|37 then

0505 print (shift (input, -37));

page 12 of 33
Figure 10. SPM-2: Magic Strings

<35>

IfSQ Level-2

<36>

B SPM-3: Copy/Paste Programming

> DEFECT INDICATOR
A largely similar or identical section of code appears in two or more
places in the program or set of programs.

> RISKS

Having to modify identical code in multiple places:

increases the likelihood of making slightly different modifications
under the mistaken assumption that you have made identical ones,

« increases the time needed to make changes,
- increases maintenance costs in direct proportion to the number of

times the code has been copied/pasted.

ASSESSMENT

+ Ifyou see a block of code that looks familiar, backtrack through the

already assessed code looking for similar blocks. If the blocks could
be implemented as a (parameterised) subroutine, mark the second
and subsequent blocks.

REMEDY

« Isolate a single copy of the code into a separate program (e.g.,

method, function, subroutine) and reuse it by calling it from the
places in which it was used.

4.4. Defensive Programming (DP)

In focussing on the main logic of a pro-

gram, programmers may fail to take

into account abnormal situations, such

as invalid data input, or a hard disk be-

coming full. As a result, their programs

are vulnerable to unexpected events or -
conditions. In essence, such programs ~_

have holes in their defenses.

In particular, interfaces between programs are some of the most error-
prone areas in a system. One often-cited study6 found that 39% of all
software errors were internal interface errors, i.e., errors in communi-
cation between programs.

To ensure more robust programs, we need not only to protect ourselves
from our own mistakes, but also to isolate our programs from the
potential errors of others. We refer to this approach as Defensive Pro-
gramming.

There are three important causes of program malfunction that we can

defend against:

« Parameter Not Checked (DP-1): A parameter received by a program is
used without first checking if its contents are present and within the
expected range.

+ Status Ignored After Call (DP-2): Error status codes or exceptions
from the run-time environment are suppressed or ignored, masking
internal processing errors.

« Unexpected State Not Trapped (DP-3): Part of a program that uses a
value to switch between different branches does not trap unexpect-
ed cases.

6. Basili and Perricone, 1984.

<37>

IfSQ Level-2

<38>

M DP-1: Parameter Not Checked

> DEFECT INDICATOR

Areceived parameter is used without first checking to see if its contents

are safe. For example:

+ A pointer is being used without checking to see if it is null.

+ An integer is being used as a divisor without checking to see if it is
Zero.

> RISKS

+ A program may use an invalid value and fail (access violation, divide
by zero, etc)

+ A program may fail silently, in other words, it will continue process-
ing when it should have stopped, with potentially disastrous conse-
quences, such as data corruption or loss.

> ASSESSMENT
« For each of the parameters to the routine:
a. Locate its first use.
b. If its validity is checked at this point then proceed to the next
parameters, if any.
c. If it is simply passed to a routine, locate its next use and check
that.
d. Ifitis used in any other way mark that use.

> REMEDY
« Explicitly check parameters at the beginning of each program.

H DP-2: Status Ignored After Call

> DEFECT INDICATOR

An exception is suppressed or the error status returned by a called pro-

gram is ignored and there is no comment explaining why. Example

indicators are:

+ C: Any call to a file system routine where the result is not checked.

+ SQL: Any command not immediately followed by a check on the SQL
state variable.

+ C++[Java: An empty statement block following a catch.

> RISKS

- A program may fail silently, in other words, it will continue process-
ing when it should have stopped, with potentially disastrous conse-
quences, such as data corruption or loss.

+ Transient information important for tracing the source of the error
is lost, making debugging difficult if not impossible.

> ASSESSMENT

+ For each of the program and subsystem calls made by program,
check to see how the status resulting from the call is used. If it is ig-
nored or suppressed without explanation, mark the call.

> REMEDY

- Putin code to perform error handling immediately following any call
to other programs or subsystems.

+ In code where exception handling is used, be specific as to which
exceptions, if any, should be caught.

<30>

IfSQ Level-2

<40>

B DP-3: Unexpected State Not Trapped

> DEFECT INDICATOR

A chain of program logic does not cover all cases and there is no expla-

nation as to why it is incomplete. For example:

- A Case or Switch statement does not include a default case.

+ A chain of If/Then/Else statements is not terminated by an unquali-
fied Else statement.

Research indicates that 50% to 80% of plain If statements should have

an Else clause.”

> RISKS

+ A program may fail silently, in other words, it will continue process-
ing when it should have stopped, with potentially disastrous conse-
quences, such as data corruption or loss.

> ASSESSMENT
+ Mark any case, switch, or chain of If/Then/Else statements that does
not cover all cases.

> REMEDY

¢ Add an Else or a Default case to trap anything other than the explic-
itly handled cases, OR

+ Add a comment explaining why this is not necessary.

7. Elshoff 1976

4.5. Causes for Concern (CfCs)

The quickest and most cost-effective way to inspect software is to read
it. Studies have shown that reading source code typically catches 60%
of defects, is 20% more effective than testing and that each hour spent
reading avoids 33 hours of maintenance work.®

In the preceding chapters we have described the defect indicators that
we look for in Level-2. These are clear-cut, objective, and can be identi-
fied in a reasonably mechanical fashion.

In addition to these defect indicators, Level-2 adds an extra level of
inspection that requires a deeper understanding of the program and a
higher degree of professional skill. The process is decidedly different
from looking for defect indicators—you now have to understand the
program.

Assessment Aspects

IfSQ has identified three points of view from which a program can be
read. These aspects are of crucial importance to the quality of programs
and in reducing the Total Cost of Ownership (TCO) of a software sys-
tem.

- Completeness: Is the program functionally complete?
+ Correctness: Is the program logically correct?
+ Maintainability: Is the program easy to maintain?

In IfSQ Level-2 we require an assessor to inspect the source code from
each of these three points of view in turn. If, in the professional opinion
of the assessor, there are any indications that the code violates any of
these objectives, this is noted as one of the following Causes for Con-
cern:

8. Russell 1991; Shull et al 2002

<41>

IfSQ Level-2

+ Not Complete: Some element appears to be missing from the pro-
gram.

+ Wrong Result: Some part of the program looks likely to produce an
incorrect result.

+ Hard to Maintain: The program looks likely to be unnecessarily dif-
ficult to maintain.

This section gives some examples of each of these aspects.

By their nature, these aspects are difficult to verify. It is also important
to note that in inspecting for CfCs, an assessor is being asked for his
professional opinion, which is inevitably subjective. However, the goal
of this more subjective level of assessment is precisely to initiate dis-
cussion with the programmer, with a view to raising awareness of over-
all quality issues during the development process.’

9. For a more formal approach to assessing Causes for Concern, refer to I1fSQ Level-3: An Industry

Best Practice.

<42>

B CfC-1: Not Complete

> PERSPECTIVE

We read the source code from the point of view of completeness, look-
ing for any indication thata program is not complete, which has not yet
been flagged with one of the Defect Indicators.

> ASSESSMENT POINTS
The following are examples of things to bear in mind when assessing a
program from the aspect of completeness:

Is each input parameter used?

Is each output parameter used?

Does the code check for malicious input (e.g., SQL injection, HTML
injection)?

Are all declared variables being used?

For each If/Then statement, is the Else clause present?

In a Case statement in C/Java does the end of each Case have a
break?

Do potentially infinite loops use a safety counter?

Do recursive routines use a safety counter?

<43>

IfSQ Level-2

<44>

H CfC-2: Wrong Result

> PERSPECTIVE

We read the source code again, this time from the point of view of cor-
rectness, looking for any indication that the program may give the
wrong result, which has not yet been flagged with one of the Defect
Indicators.

> ASSESSMENT POINTS

The following are examples of things to bear in mind when assessing a

program from the aspect of correctness:

- If the routine is a function does it return a valid value in all possible
circumstances?

+ Does the code initialise variables as they are called if possible?

« Are implicit data type conversions obvious?

+ Does the code avoid mixed-type comparisons?

+ Do expressions that use integer division work the way they are meant
to?

+ Do integer divisions avoid integer overflow problems?

+ Does the code systemically prevent rounding errors?

+ Are all array indices within the bounds of the array?

« Does the code check pointers for validity before using them?

B CfC-3: Hard to Maintain

> PERSPECTIVE

We read the source code once more, imagining ourselves in the role of
a maintenance programmer seeing the program for the first time,
looking for any indication that a program may be difficult to maintain,
which has not yet been flagged with one of the Defect Indicators.

> ASSESSMENT POINTS
The following are examples of things to bear in mind when assessing a
program from the aspect of ease of maintenance:
+ Does the routine name describe everything that the routine does?
+ Does the routine have strong functional cohesion—doing one and
only one thing and doing it well?
+ Does this code belong in this application or should it be part of an
existing library?
+ Do all variables have the smallest scope possible?
Do names fully and accurately describe the object they represent?
« Are the following names likely to cause problems:
+ names that are misleading
+ names with similar meanings
+ names that are only different by one or two characters
+ names that sound similar

<45>

IfSQ Level-2

<46>

5. The IfSQ Compliance Assessment Method

Assessment Process

The assessor checks the source code page by page, then makes a writ-
ten declaration that he or she has checked the code against the Level-2
standard and either found it to be free of defects, or marked each of the
defect lines found.

The end-result of an assessment is therefore an IfSQ Compliance
Assessment Report—a measurement of compliance or non-compli-
ance to the standard—and the annotated source code.

1fSQ | Level-2

Level-2 | | Assessment

Standard A

— =

Annotated

Source > | Source

Code - Code |
L = —

Figure 11. Assessment Process

Who should carry out an assessment?

The IfSQ assessment method can provide various levels of assurance of
compliance depending on who is chosen to perform the assessment.

Often an assessment is carried out by someone within the development
team (peer assessment). For higher levels of assurance, an external
organisation or individual can perform the assessment (third-party
assessment or certification).

Peer assessment

This is a check carried out within the development team by someone
other than the person who wrote the code, such as a development team
manager or another programmer.

A peer assessment gives the programmer immediate feedback on any
problems that may lie in his code, giving him a chance to fix them
before it goes into testing.

Peer assessment is the most cost-effective approach to quality for the

following reasons:

+ Knowing that his code will be inspected by others increases a pro-
grammer’s level of attention to detail and care during program-
ming."®

+ Having an independent assessor review the code can also uncover
unrelated design or construction quality issues.

+ The development organisation can commission its own reviews and
does not need to wait for, or rely on, external audits to assess quality
or risk.

Third-party assessment

A development manager may choose to have an assessment performed

by an external organisation or an independent assessor such as an

auditor. This has the following benefits:

+ Itavoids impacting the development process due to the use of scarce
programmer resources,

+ The assessor can audit separately from the development team, and
thus avoid any possible conflict of interest.

Certification

For the highest level of assurance, one can choose to have the assess-
ment carried out by a quality assurance body, who will inspect the soft-

10. Glass, 1999

<47>

IfSQ Level-2

<48>

ware against the Level-2 standard and issue their own certificate of
compliance.

1fSQ AN

Level-2 Q

Standard N\

Certified
dCertiﬁcation ’—> Level-2
NS~

Figure 11. Certification

Ratification

One can choose to have any of the above assessments ratified by an inde-
pendent person or organisation, such as an external consultant or auditor.

1fSQ

Level-2

Standard \

e N Ratified

Assessed B Assessment

Source

Code NS~
[77///

R -
Level-2 / A
Assessment </

NHA

Figure 12. Ratification of an assessment

This ratification consists of a recheck of all or part of the assessed code,
to validate the quality of the initial assessment. The ratifier then signs
off on the original IfSQ Compliance Assessment Report. For more in-
formation on ratification, refer to the IfSQ website.

Which code should you assess, and how much?

There are a variety of reasons you might want to carry out an assess-

ment of a piece of code.

+ You might want to assess software that is causing problems, in order to
attempt to quantify if the problems stem from a basic lack of quality.

+ You might choose to assess software that has a trust issue, for exam-
ple software that has been outsourced to a third party.

You also have to decide the size of the sample you want to assess. For
example, you could assess a representative portion of the code, only the
critical routines, routines which been altered recently, routines which
have been altered more frequently than others, or even all of the code.

When should you perform an assessment, and how often?

Ifyou are a programmer, you should perform an assessment as soon as
you have finished a piece of code, and are satisfied it is complete and
functionally correct.

Code should always be assessed before it is submitted to the formal
testing procedure, or taken into use.

If you are a programmer performing maintenance, it is also useful to
carry out an assessment before you make any changes, in order to
assess the quality, and, if necessary, to adjust your estimates as to how
long it will take to perform the work.

<49>

IfSQ Level-2

<50>

5.1. Commissioning a Level-2 Assessment

How to commission an assessment

1. Identify the code (i.e., source code file, class, procedure, method,
module, etc.) you wish to have assessed.

2. Choose a qualified assessor. The person performing a Level-2 assess-
ment:

+ Must have successfully completed the course, Performing an IfSQ
Level-2 Assessment.

+ Must not have been directly involved in writing the program being
assessed.

+ Must have at least two years experience of programming in the
language in which the program is written.

3. Notify the assessor that his assessment may be subject to a review
and ratification at a later date and that he should therefore annotate
each page exactly as instructed in Section 5.2.

4 Once the assessment is complete, produce an IfSQ Compliance
Assessment Report.

5.2. Performing a Level-2 Assessment

Performing an assessment consists of:

+ Printing the source code,

+ Inspecting and annotating the source code page by page,
+ Producing a Compliance Assessment Report.

Printing the source code

The IfSQ Assessment Process requires that you print off the entire piece
of code being assessed. Doing the inspection on paper makes it easier
to keep a count of defects found and minimises the chance of mistakes.
In addition, since the inspected piece of code is an auditable item of
work, it must be possible to store it as a physical object.

The IfSQ Assessment Process makes use of a page inspection grid that
lets you keep a running total of defects found.

1fSQ Level-2
BIF CIF
Work In Progress

WIP-1
WIP-2
WIP-3

Structured Programming
SP-1
SP-2
SP-3

Single Point of Maintenance

SPM-1
SPM-2
SPM-3

Defensive Programming
DP-1
DP-2
DP-3

Causes for Concern

Cfc-NC
CfC-WR
Cfc-HtM

wh

Figure 14. IfSQ Level-2 Page Inspection Grid

This inspection grid must be printed on every page of source code
(preferably in red so that the code is still visible if there is an overlap).
To ensure this you should use paper pre-printed with the grid. On the

Initials

ww.ifsq.org

IfSQ website you can:

+ Download a PDF template,

+ Order pre-printed paper,

- Download a graphic file of the grid for insertion as a watermark in
your word-processing file.

Note: Overlaps can be minimised by printing the code in landscape for-

mat.

<5I>

IfSQ Level-2

<52>

How to perform an assessment

Print the code (i.e., class, procedure, method, module, etc.) to be
reviewed.

Take the first page of code.

Mark off the B/F (Brought Forward) fields by putting a line through
them. You will be using these fields to keep a running total of
defects throughout the entire routine.

SP-1 SP-3 1fSQ Level-2
= | s o
Work In Progress
WIP-1
WIP-2 -_—
WIP-3

Scan for any occurrences of WIP-1. Circle each occurrence on the
page, and write the WIP-1 defect indicator’s abbreviation next to
it.

sHtml = SHtml & “</tr>” & vbCrLf

if Len(vResult) <> 0 Then
ReDim Preserve vExport (iIndex)
vExport (iIndex) = Trim(Replace(vResult, “.”, “,”))
Inc iIndex

Else

‘I still need to think about this VV!P-I

End If

After you have finished scanning the page, write down the total
number of defect lines (i.e., lines impacted by WIP-1 problems) in
the Page column. If you found none, enter a dash mark.

1fSQ Level-2
BJF CJF
Work In Progress
WIP-1 -_
WIP-2 J—
wip-3 | —

I0.

II.

Fill in the C/F (Carried Forward) fields by adding the Page field to
the B/F field.

1fSQ Level-2
BJF CIF
Work In Progress
WIP-1 | — 3 3
WIP-2
wiP-3 | —

Repeat steps 4 to 6 for the remaining 11 objective inspection crite-
ria (WIP, SP, SPM, DP). (For details of each criteria, see Section 4.,
“The IfSQ Level-2 Standard”.)

Repeat steps 4 to 6 for the 3 subjective inspection criteria. For
details see “Assessing Causes for Concern” on page 55.

Once you have finished scanning the page, initial the bottom of
the grid.

CfcWR] [[|
Cfc-HtM

Initials

9

www.ifsq.org
Finally, copy the C/F values into the B/F fields on the following
page.

Q Q
BIF Page CIF BJF Page CIF
0 ogre 0 og
Wip-1 | — 2 3 wip-1 | [3
WiP-2 | — | wip-2 Pl 1
WIP-3 | — | | WIP-3
S S
Page 1 Page 2

Repeat steps 4 to 10 for all remaining pages.

<53>

IfSQ Level-2

Updating the SP Totals

In addition to the main inspection grid, there are two mini-grids for
SP-1 and SP-3 at the top and bottom of the page.

SP-1 SP-3
BF]
SP-1 SP-3

Current Routine
CIF

These help you to keep running totals for SP-1 and SP-3

 According to SP-1, a routine may not exceed 200 lines. For every line
over this number, the routine receives a mark of 1 on the inspection
grid. So if the routine is 220 lines long for example, it receives a score
of 20. If a routine continues onto the next page, enter the number of
lines in the Current Routine field, then add it to the B/F field to fill in

the C/F field.
SP-1 SP-3
L T
SP-1 SP-3
<+ Current Routine (W
= CF | 62

Once a routine has reached 200 lines, simply put a cross in the B/F
field on subsequent pages and continue adding using the SP-1 field
in the main grid.

| sPa SP-3
Bl X [
SP-1 SP-3 SP-1 13 —_
Current Routine)(SP-2
aF | X SP-3

<54>

+ According to SP-3, routines may not contain more than 1o binary
terms in conditional statements. For every additional binary term the
routine receives a mark of 1 on the inspection grid. If a routine con-
tinues on the next page, enter the number of binary terms in the Cur-
rent Routine field, then add it to the B/F field to fill in the C/F field.

SP-1 SP-3

] [3

SP-1 SP-3

< Current Routine 4
= CIF "

+ Once you have finished scanning the page, copy the C/F values into
the B/F fields on the following page.

SP-1 SP-3 SP-1 SP-3
BF [1 3 BF [(B2 95)
SP-1 SP-3
-+ Current Routine (9 4
= a1z | 9
Page 11 Page 12

+ Once a routine has reached 10 binary terms, simply put a cross in the
B/F field on subsequent pages and continue adding using the SP-3
field in the main grid.

Assessing Causes for Concern

In this part of the inspection, you are looking for defects that are not
covered by the IfSQ Level-2 objective defect indicators, but which, in
your professional opinion, present a hazard.

Estimate the number of lines that have to be altered to address your
concerns and write it in the appropriate field on the inspection grid.

<55>

foorIfiG8tE (ebfheTe
.Noac@bjLevel7Node.
~r T 1

Hog hd)

NQ) ey
: G L
W tﬂlfﬁﬁﬁg@g&gg

ount -
o

<56>

6. Acknowledgements

The authors wish to acknowledge the following individuals for their
contributions and cooperation in the development and production of
this standard.

+ Steve McConnell, CEO and Chief Software Engineer at Construx
Software, for his excellent book “Code Complete” (Microsoft Press,
ISBN 0-7356-1967-0) which we used as a starting point for finding
research relevant to our subject area.

- Hans Suerink, Chairman of the Technical Policy Committee of
NOREA, the Dutch Order of Registered EDP Auditors, who helped us
to understand the importance of formal, objective standards in the
EDP audit arena.

<57>

foorIfiG8tE (ebfheTe
.Noac@bjLevel7Node.
~r T 1

Hog hd)

NQ) ey
: G L
W tﬂlfﬁﬁﬁg@g&gg

ount -
o

<58>

7-

I0.
II.

I2.

Research

IBM found that each hour of inspection prevented about 100 hours
of related work (testing and defect correction) (Holland 1999).

A study of large programs found that each hour spent on inspec-
tions avoided an average of 33 hours of maintenance work and that
inspections were up to 20 times more efficient than testing
(Russell 1991).

NASA’s Software Engineering Laboratory found that code-reading
detected 3.3 defects per hour of effort: Testing detected about 1.8
errors per hour. Code reading found 20 to 60% more errors over the
life of the project than the various kinds of testing did (Card 1987).
As much as 9o% of development effort comes after initial release
(Pigoski 1997).

Construction errors detected in system test cost 10 times more to fix
than in construction phase. Construction errors detected post-
release cost 10-25 times more to fix than in construction phase
(Fagan 1976; Dunn 1984; Boehm & Turner 2004, Shull et al. 2002).
Debugging and associated rework takes about 50% of the time
spent in a typical software development cycle (Boehm 1987, Haley
1990, Jones 1998, Shull et al. 2002, Wheeler, Brykczynski & Meesen 1990,
Wiegers 2002).

Large programs that use information hiding are a factor 4 easier to
modify than programs which don’t (Korson & Vaishnavi 1986).

Up to 200 lines of code, routine size is inversely correlated to the
number errors per line of code (Basil & Perricone 1984).

39% of all errors are caused by internal interface errors | errors in
communication between routines (Basil & Perricone 1984).

50% to 80% of plain “if” statements should have had an “else”
clause (Elshoff 1976).

Few people can understand more than 3 or 4 levels of nested ifs
(Yourdon 1986; Ledgard & Tauer 1987).

Control-flow complexity has been correlated with low reliability
and frequent errors (McCabe 1976, Shen et al. 1985, Ward 1989).

<590>

IfSQ Level-2

<6o>

13.

14.

15.

16.

I7.

18.

19.

20.

21.

22.

23

24.

Code reading detected about 80% more faults per hour than testing
(Basili & Selby 1987; Ackerman, Buchwald & Lewski 1989).

Detection of design defects costs 6 times more using testing than by
using inspections (Basili & Selby 1987, Ackerman, Buchwald & Lewski
1989).

Average cost of finding an error using code inspections is 3.5 staff
hours compared to 15-25 hours to find each error through testing
(Basili & Selby 1987, Ackerman, Buchwald & Lewski 1989)

Increased quality assurance is associated with a decreased error rate
but does not increase overall development cost (Card 1987).
Software defect removal is the most expensive and time-consuming
form of work for software (Jones 2000).

Raytheon reduced its cost of rework from about 40% of total project
cost to 20% though an initiative that focused on inspections (Haley
1996).

ICI found that maintaining a portfolio of about 400 programs was
only about 10% of the cost of maintaining a similar set of programs
that had not been inspected (Gilb & Graham 19g3).

Individual inspections typically catch about 60% of defects (Shull et
al. 2002).

The combination of design and code inspections usually removes
70-85% or more of the defects in a product (Jones 1996).

Designers and programmers learn to improve their work through
participating in inspections and inspections increase productivity
by 20% (Fagan 1976, Humphrey 1989, Gilb & Graham 1993, Wieg-
ers 2002).

.A study of 13 reviews at AT&T found that the importance of the

review meeting itself was overrated; 9o% of the defects were found
in preparation for the review meeting and only about 10% were
found during the review itself (Glass 1999).

About 85% of errors can be fixed in a few hours (Weiss 1975, Ostrand
& Weyuker 1984, Grady 1992).

8. Bibliography

Ackerman, A. Frank, Lynne S. Buchwald, & Frank H. Lewski 198g.
“Software Inspections: An Effective Verification Process.” IEEE Soft-
ware, May/June 1989, 31-36.

Basili, V.R. and B.T. Perricone. 1984. “Software Errors & Complexity:
An Empirical Investigation.” Communications of the ACM 27, no.1: 42 - 52.

Basili, Victor R., and Richard W. Selby. 1987.

“Comparing The Effectiveness of Software Testing Strategies”, IEEE
Transactions on Software Engineering SE10, no. 6: 728-38.

Bentley, Jon. 1982. Writing Efficient Programs. Englewood Cliffs, NJ:
Prentice Hall.

Boehm, Barry and Richard Turner. 2004. Balancing Agility and Discipline:
A Guide for the Perplexed. Boston, MA: Addison Wesley.

Boehm, Barry W. 1987. “Improving Software Productivity.”

IEEE Computer, September, 43-57.

Card, David N. 1987. “A Software Technology Evaluation Program.”
Information and Software Technology 29, no. 6: 291-300

Card, David N., Victor E. Church, and William W. Agresti. 1986.

“An Empirical Study of Software Design Practices.” IEEE Transactions
on Software Engineering SE-12. no. 2: 264-71.

Dunn, Robert H. 1984. Software Defect Removal, New York, NY
McGraw Hill

Elshoff, James L. 1976. “An Analysis of Some Commercial PL/1
Programs.” IEEE Transactions on Software Engineering” SE-2 no. 2: 113-
20.

Endres, Albert. 1975. “An Analysis of Errors and Their Causes in
Systems Programs.” IEEE Transactions on Software Engineering SE-1,
no. 2 (June): 140-49

Fagan, Michael E. 1976. “Design and Code Inspections to Reduce
Errors in Program Development.” IBM Systems Journal 15, no. 3: 182-211.

Gilb, Tom and Dorothy Graham. 1993. Software Inspection, Wokingham,
England: Addison-Wesley.

Glass, Robert L. 1999. “Inspections — Some Surprising Findings,”
Communications of the ACM, April 1999, 17-19.

<61>

IfSQ Level-2

<62>

Gorla, N., A.C. Benander and B.A. Benander. 19go.

“Debugging Effort Estimation using Software Metrics”. IEEE Trans-
actions on Software Engineering SE-16 no. 2: 233-31.

Grady, Robert B., and Tom van Slack. 1994. “Key Lessons in Achieving
Widespread Inspection Use.” IEEE Software, July 1994-.

Haley, ThomasJ. 1996. “Software Process Improvement at Raytheon.”
IEEE Software, November 1996.

Holland, D. “Document Inspection as an Agent of Change”.

Software Quality Professional, December 199g: 22-33.

Humphrey, Watts S. 1989. Managing the Software Process,
Reading, MA: Addison-Wesley.

Jones, Capers. 1996. “Software Defect-Removal Efficiency,”
IEEE Computer, April 1996.

Jones, Capers. 1998. Estimating Software Costs, Reading, MA:
Addison-Wesley

Jones, Capers. 2000. Software Assessments, Benchmarks, and Best Practices,
Reading MA. Addison-Wesley.

Korson, Timothy D., and Vijay K. Vaishnavi. 1986. “An Empirical Study
of Modularity on Program Modifiability.” Empirical Studies of Pro-
grammers. Norwood, NJ: Ablex.

Ledgard, Henry F. and John Tauer. 1987. Professional Software, vol. 2,
Programming Practice. Indianapolis: Hayden Books.

McCabe, Tom “A Complexity Measure” IEEE Transactions on Software
Engineering, SE2, no. 4: 308-20.

Pigoski, Thomas M. 1997. Practical Software Maintenance, New York, NY:
John Wiley & Sons.

Russell, Glen W. “Experience with Inspection in Ultralarge-Scale
Developments”, IEEE Software, vol. 8, no. 1 (January 1991),
pp. 25-31.

Shen, Vincent Y., et al. 1985. “Identifying Error-Prone Software —

An Empirical Study.” IEEE Transactions on Software Engineering, SE-11,
no. 4: 317-24.

Shneiderman, Ben. 1g8o0. “Exploratory Experiments in Programmer

Behavior.” International Journal of Computing and Information Science 5:

123-43.

Shull, et al 2002. “What We Have Learned About Fighting Defects”
Proceedings Metrics 2002, IEEE 249-258.

Soloway, Elliot, Jeffrey Bonar, and Kate Elrich. 1983. “Cognitive
Strategies and Looping Constructs: An Empirical Study.”

Ward, William T. 1989. “Software Defect Prevention Using McCabe’s
Complexity Metric.” Hewlett-Packard Journal, April 64 - 68.

Wheeler, David, Bill Brykczynski, and Reginald Meeson. 1996.
Software inspection: An Industry Best Practice. Los Alamitos, CA: IEEE Computer
Society Press.

Wiegers, Karl. 2002. Peer Reviews in Software: A Practical Guide. Boston,
MA: Addison-Wesley.

Wiegers, Karl. 2003. Software Requirements, 2d Ed, Redmond,
WA: Microsoft Press.

Woodfield, S. N., H. E. Dunsmore, and V. Y. Shen. 1981.
“The Effect of Modularization and Comments on Program Comprehension.”
Proceedings of the Fifth International Conference on Software Engineering, March 1981,
215-23.

Yourdon, Edward. 1986. “Managing the Structured Techniques: Strategies
for Software Development in the 19gos.” 3d ed. New York, NY: Yourdon Press.

<63>

vrqaﬁlcefmrlﬁiﬂstr (eb?
obiL8R20R0dk Noasab] Leve 17N

1fSQ Level-2

15Q Level-,

| P

Waork n Progress

Quick Reference o
I Ry
]

Strlictyrey Program ming

Work In Progress
* WIP-1—Vague “To Do” — -
+ WIP-2—Disabled Code | .
. WIP-3—EmPty Statement Block %ﬂ'—”mﬂwaimenanw
_— ——

Defensiye Program ming

Structured Programming
SP-1i—Routine Too Long g —
e
]

+ SP-2—Nesting Too Deep
+ SP-3—Routine Too Complex Causes for Copgenn

Single Point of Maintenance

SPM-1—Magic Numbers
WWW.ifsq.o rg

+ SPM-2—Magic Strings
* SPM-3—Copy/Paste Programming

Defensive Programming

DP-1—Parameter Not Checked
DP-2—Status Ignored After Call
DP-3—Unexpected State Not Trapped

Causes for Concern

CfC-NC—Not Complete
CfC-WR—Wrong Result
CfC-HtM—Hard to Maintain

1fSQ

Institute for Software Quality

www.ifsq.org

